Archive for the ‘3D Software’ Category

The Daily 3D Detail: New Algorithm Speeds Up FDM 3D Printing

Posted by Editor On October - 24 - 2017

University of Michigan’s Smart and Sustainable Automation Research Laboratory (S2A Lab) reports they written a new algorithm capable that can speed up an FDM 3D printer to operate up to ten times the speed.

Researchers 3D-printed a 37.23mm-wide scale-model of the U.S. Capitol Building in three hours and six minutes, achieving an acceleration rate of 10 m/s2.

An ordinary 3D printer accelerated to this point without the new algorithm would result in a failed print because of shifting layers from vibrations of the stepper motors.

Molong Duan and Deokkyun Yoon, researchers of the Michigan study, under the direction of Professor Chinedum Okwudire, said, “The motion of the printer’s build platform is along the x -axis, while its print head moves along the y – and z- axes.

“All three axes of the printer are controlled by stepper motors, but the focus of this study is on controlling its x – and y- axis motions which generate significant vibration, due to the printer’s flexible structure, as its print head and build platform move.”

In an industry raft with acronyms, there’s one more to add to the list: LPFBS (limited-preview filtered B-spline). This is the method devised by Duan, Yoon, and Okwudire addressed by the algorithm. By using an online feedback loop, a realtime check system is conducted that constantly rights the printer head for an accurate position.

The value of the algorithm could be considerable for 3D printing, as it can be easily implemented in spooler software, applicable to all levels of desktop 3D printers, and much less costly than sensors and hardware options.

The report was published in the scientific journal Mechatronics and available at For more on the story, visit

Early-Bird Registration Now Open for Pacific Design and Manufacturing Expo

The Pacific Design and Manufacturing Expo is the largest of its kind in the western U.S. Teamed along with the Medical Design and Manufacturing West Show at the Anaheim Convention Center on Feb. 6-8, the show promises to be a worthwhile investment of time for people of interest in nearly every manufacturing sector.

Companies from all over will be on hand with impressive displays and trade booths offering the latest in robotics and automation, CNC tools, scanners, new materials, and, of course, 3D printing.

Registration is now open for the show and the expo is free for early registration. Plan your calendar dates now to be in Anaheim on February 6-8 and be prepared to be marveled by new innovations and fantastic networking opportunities with peers in a variety of trades.

Sign-up is at

Early Bird Registration for Inside 3D Printing Ends This Week

Sign up today for this must-see SoCal event

The deadline to save with early bird prices to Inside 3D Printing San Diego, Dec. 4-5 is this Friday, Oct. 20 Registrants can save up to $400 on on-site prices of the show’s seminars and attendee events. Registration to visit the expo show itself is free, but must be done in advance.

The 2016 Inside 3D Printing Show was a stellar event, and a must for 3D printrs in the greater Southern California area. Companies ranging in notoriety in every vertical will be there to provide new developments to consumers and retailers alike and NASA will be on deck with a rocket nozzle demonstration.

Seminar topics include the “The Future of 3D Printing” keynote address featuring Terry Wohlers of Wohlers Associates; “Agility in Motion: Advantaged 3D Printing Innovation;” “A Road Map to 1 Million Unique Bio-Mechanically Enhanced Products;” “Getting Started with 3D Printing in Orthopaedic Surgery;” “Build with Life—Living Structures from 3D Bioprinters” and many more.

Sign up today at

The Daily 3D Detail: Structure Synth create incredible 3D objects

Posted by Taila Rodrigues On August - 6 - 2017
Structure Synth complexy

Even if you who have never coded before, and even if you are terrible at math, you are able to use this tool and generate surprising and complex 3D structures.

Structure Synth is an open-source, multiplatform system for manipulating 3D structures.

Instead of using the mouse to position objects and modify structures, you position them with command lines written in the EisenScript code.

EisenScript is a programming language designed by Mikael Hvidtfeldt, pure mathematics, basic and simple.


EisenScript codes

This system has a full set of features that allow you to create generative 3D scenes. There are a lot of commands operators to explore, but with just a few commands you can quickly and easily generate 3D artwork that looks impossible or almost impossible.

The generated files can be saved in .obj format compatible with 3D slicer software and can then be printed in 3D.

The system is completely free, available for Mac, Windows and Linux – download here.

To read the full content and learn more about Structure Synth visit their website.

Boeing Inks $1B Contract with Dassault Systemes

Screen shot of Dassault Systèmes 3DEXPERIENCE

With the battle for commercial aviation dominance down to only two major players, every decision to give their companies the edge is a big deal worthy of attention. Such is the case for Boeing’s $1 billion contract with Dassault Systèmes for use of their 3DEXPERIENCE software.

The story first appeared in the French newspaper Le Figaro about how the contract is to span 30 years and is intended to allow Boeing to to improve operations across the company for both commercial and defense projects.

Boeing’s CIO and SVP of Information Technology & Data Analytics Ted Colbert had this to say about the contract: “This digital enabler provides global design and manufacturing capabilities that will fuel our second century. The value of this extended strategic partnership is a mutual desire to transform how Boeing connects, protects, explores and inspires the world.”

For the full story in English, visit this page at

RAPID + TCT 2017 Event Report

Posted by Fred Kaplan On May - 21 - 2017

Confessions of a 3D printing nerd at 3D printing’s biggest show of the year

By Fred Kaplan

RAPID + TCT 2017 Event Report

I admit it, I have an unhealthy obsession with 3D-printer tradeshows but the 2017 Rapid + TCT show, held May 8-11 in Pittsburgh, signaled the next iteration of 3D printing. All right, so what’s the big deal? How about a seemingly endless supply of new functional end-use 3D-printing technologies, and materials that had to be seen to be believed.

Carbon 3D
The best example of 3D-printing end-use parts was at the Carbon 3D booth. Carbon 3D burst onto the 3D-printing scene with a 2015 TED talk that has been viewed more than 700,000 times. After two years of anticipation and speculation during which Kodak announced that it would be providing materials for the printer, Carbon 3D is now leasing printers to end users.

Carbon3D Shoe Lattice

Carbon 3D recently partnered with Adidas to develop the first  3D-printed part that will be mass produced for consumer use; the midsoles of Futurecraft 4D shoes. Midsoles of shoes traditionally can’t be injection or compression molded in one piece with variable flexibility in a single piece. Carbon 3D experimented with a variety of lattices that were printed with a variety of production grade elastomers that don’t require support or excess materials — which reduce the manual post-processing steps of traditional 3D-printing. Adidas will have 5,000 pairs available in the fall/winter of 2017.

Carbon3D Shoe

Desktop Metal
All the buzz at Rapid + TCT 2017 was about the Desktop Metal printers whose booth was at the geographic center of the David L. Lawrence Convention Hall. Desktop Metals used some of the $97 million funding it received from Google, BMW, Saudi Aramico, GE, and others to sponsor the nametag lanyards, the convention hall wireless, and everything else that held still long enough to be branded. The anticipation for a desktop printer capable of printing in metal materials has hit an all-time frenzy.

Desktop Metals announced two systems the Studio and the Production systems. The Studio printer will be available in the fall of 2017, is designed to print individual metal parts. The Production system, designed for large-scale production, will be available in 2018.

Along with the announcement of the Studio Printer, Desktop Metals has announced an office-friendly sinter oven that reaches a peak temperature of 1400 celsius to post-process printed parts. With a price tag more than $120K, the printers promise to safely and easily print many metal alloys at a fraction of the cost of previous metal 3D printers. Among the advantages, Desktop Metals offers the raw material encased in a rod of metal and binder, instead of powdered metals that are possibly flammable — and definitely dangerous — and the ability to affordably and easily print a wide variety of different alloys. I was excited to see sample parts in all three stages of the process.

The first step in the process is the extrusion of metal and binder that is printed larger than the final product. The next step is the binder is removed, and the third step is the part is sintered in a sintering oven which shrinks the printed part to the expected size. The temperature of the sintering will vary depending on the metal alloy,but the temperature could be as high as 1400 C. Markforged also offers a similar product, the Metal X which has been said will be available in the fall of 2017.

The HP booth featured their Jet Fusion 3200 and 4200 printers which leverage HP’s history of jetting inks and fluids in traditional 2D desktop printers. The build area of the HP printers is 2,440 cubic inches (15″ x 11.2″ x 14.6″) and its ability to print on a voxel by voxel basis (the 3D equivalent of a screen pixel) simultaneously on the X and Y axis which yields high-quality printed parts ten times faster than a traditional FDM 3D-printer. HP have used the advantages of printing in powder (speed plus printing with no attached support structure) to create a profitable return on investment on 3D-printing projects similar to mid-size injection molded runs.

The HP Jet Fusion printers use a new series of processes developed by HP which include thermal control, fusing, and detailing agents printed in the X-Y axis on a layer of the printing material which is currently a low-cost nylon, PA12 powder. Future material developments will include full color parts and a variety of materials including ceramics.

The theme of producing functional end-use part has expanded and the UnionTech booth showed all four of their SLA printers. The largest build size is the RSPro 800 which has a build platform of 31.5″ x 31.5″ x 19.7″.

What I find most interesting about the UnionTech printers is that they offer the highest quality SLA printing with open source materials — which means that there is an almost endless selection of material options, including DSM materials, BASF and any other SLA printing materials on the market. The printers are assembled in China with globally-sourced parts. By increasing their laser power, UnionTech is able to increase the print speed of their 3D printers by 100% over competitive printers.

What makes a trade show like Rapid + TCT 2017 so great is the opportunity to see a technology, and feel the sample part of that technology that hitherto seems to be internet lore. XJET is an Israeli company whose CEO was the CTO of Objet Geometries — the original PolyJET 3D printer. XJET uses the concept of jetting microscopic particles of material to form an object, replacing thermoplastics with solid metal nanoparticles, suspended in a liquid ink, in a process called “NanoParticle Jetting.” The sample parts I felt were completely smooth with no visible or tactile evidence of layer lines on the sample parts.

I was pleased to see technological surprises in every row of vendors at the show. I have been anxious to see the Roboze 3D printer that prints in Ultem/PEI and PEEK, as well as 14 other industrial grade materials with more to come. Printing in PEEK and Utem requires extremely high temperatures which triggered my expectation of seeing a 3D printer reminiscent of a Soviet-era monstrosity, but instead, I found the Robooze printers to be sleek and elegantly designed. They are office-friendly printers that emit no heat on the exterior surface of the printer despite internal temperatures. Roboze is a completely gear-driven FDM printer that is accurate to within 25 microns across the print bed.

Do you think the world of additive manufacturing materials is limited to thermoplastics and metals? Wrong! Admatec, a Dutch company has combined DLP (digital light projection) 3D-printing with ceramics in their new Admaflex 130. The materials that the Amdaflex print are alumina, zirconia and fused silica. The advantages of ceramics include extreme hardness and excellent electrical insulation. They are also lightweight parts that are functional in high temperature, and under high pressures.

After walking the Rapid + TCT 2017 show, my head was exploding with the brilliance of the technological and material options at all price points of 3D printing. The fall of 2017 promises to be an amazing time, in which we will see the amazing new printers hit the streets. The original technology of the SLA system that Chuck Hull developed 30 years ago is being adapted to be perhaps the most functional technology yet.

I left Pittsburgh knowing that rate of innovation is not slowing down and looking forward to next trade show with enthusiasm.

Fred Kaplan is a 3D-printing material specialist, who has worked with SLA, SLS, FDM, ColorJet, ADAM, DLP, LOM, FFF, MultiJet, Polyjet, and SDL 3D printers. Specializing in matching the best technology to a particular 3D printing application, he has also worked with many brands of 3D scanners and many CAD packages.

Prior to his work in additive manufacturing, Fred received a Los Angeles-area Emmy and other awards for documentary filmmaking.

Matterhackers Matter about Matter

Posted by Fred Kaplan On May - 16 - 2017

3D printing is all about what will work best for the part

By Fred Kaplan

Matterhackers Matter about Matter

Matterhacker’s lab where products are tested and used

The first 3D printer company I worked for sold printers that made objects out of a refined and expensive form of gypsum. Gypsum has been called “Plaster of Paris” due to the proximity of the Montmartre quarries to the City of Lights. Gypsum is also the main ingredient of sheetrock or drywall — not exactly the strongest or sexist material that one would expect from a 3D printer but it worked well for its purpose at the time.

From humble plaster beginnings, 3D printing has always been a materials game. One cannot say what material is the best because every printing need is different. For many, PLA is the best material because it is easy and inexpensive. For the aerospace community, Ultem /PEI or PEEK are considered the holy grail of 3D-printable materials.

SPOILER ALERT // There will be a rash of new desktop metal printers coming out in the next twelve months which will produce fully dense metal part on what is comparably inexpensive $120,000 printers. //

The best materials are subject to what your intended use is for your 3D-printed part. Which can be divided into three groups.

  • Rapid Prototype: a geometric representation of the object to be viewed, held or snap fit to test the shape of the object perhaps in relationship to another object
  • Functional Prototype: The printed part may be subject to heat or stress to determine if the geometry fits and functions under specific conditions I would put 3D printed part that will be a casting in this category.
  • End Use Pars: which includes Tooling, Aerospace, Automotive, Medical, Dental, Jewelry, Food, Bioprinting, Clothing and more

Given the wide variety of uses for 3D-printed objects — everything from toothbrush holders to a functioning kidney — it’s crucial to know what materials you want before you purchase a 3D printer because the material you print with will affect the geometry of the part.

Matterhackers Matter about Matter

We spoke to MatterHackers’ Director of Marketing Dave Gaylord to get a greater understanding what 3D-printable materials are being used and why would one choose any particular material. Granted, we could have taken a six-year degree program in chemistry to get our answer but we figured asking Dave was like the same thing. MatterHackers opened in 2012 and currently represents over 70 manufacturers of 3D printers as well as a large assortment of filament materials including PLAABSnylonNylonX, SLA resins, Flex, PETG and more.

Matterhackers Matter about Matter

“sets MatterHackers apart is that they test and use the products they sell, much the way you would expect an innovative lab to work. Matterhackers’ website provides sought-after user forums where customer’s questions are answered by MatterHackers’ trained staff.

3D Printr Magazine: Can you tell me about MatterHackers?

Dave Gaylord: “MatterHackers is the largest 3D printer retailer in the United States. We are known for our customer service and we feel confident in our ability to provide all the information our customers need in order to use their 3D printer successfully. Our website features how-to guides on many subjects including how to calibrate your extrude, use cases that illustrate 3D printing applications, and generally inspire our customers with interesting designs. We write features stories about new products and accessories. There are 3D printer reviews and it’s a go-to resource for 3D printing. Recently we have been adding video content.”

3D Printr Magazine: Tell me about Matterhackers’ customers.

Dave Gaylord: “We have three distinct types of customers:

  • Hobbyist and Do It Yourself customers who are the root of the open source movement and our primary customer
  • The education community.
  • Professional Engineers. We have been selling into the professional market such as engineers what makes these customers unique they require greater geometric tolerances and the absolute best user experience. These customers will use 3D printed parts as an end use part.”

3D Printr Magazine: What materials are being used?

Matterhackers Matter about Matter

Dave Gaylord:“PLA is the most popular material, it’s easy to use so everybody uses it — unless there is some specific case requiring a more robust material. PETG (Polyethylene Terephthalate) is going to overtake a good bit of the market in the next year or two. PETG is easy to print with and it’s more durable. Our more advanced users are printing in nylon. MatterHackers’ in-house engineers are using nylon almost exclusively. It’s a stellar material that makes really strong parts and the layer adhesion of nylon is remarkable. Last year we announced our NylonX material which is a chopped carbon filled nylon. It’s a super strong, super stiff material that looks great right off the print bed. About a month ago we launched a PRO Series nylon that offers seven different color materials. Prior to this nylon was only available in the natural off-white color.”

3D Printr Magazine: What do you think is the best support structure method?

(3D printers add what’s called “support structure: when printing overhangs and to void the problems when the geometry would have plastic printing in mid-air. The most common form of support structure is a lattice of the printing material that is broken away in a post-printing process.)

Dave Gaylord: “Well that depends. If you don’t have dual-extrusion, the only option is printing in one material and breaking away the support material. If your 3D printer has dual-extrusion — meaning that the printer can print two different material in the same build — an additional material can be printed to physically support the build material. There are two soluble support materials — PVA (Polyvinyl alcohol) which dissolves in water when used with PLA plastic — and HIPS (high impact polystyrene), used with ABS plastic and removed using D-Limonene which is derived from citrus oils. We find that same material break-away supports work just fine. MatterHackers’ slicing software MatterControl has really great features that make easy-to-remove break-away support.”

3D Printr Magazine: Can you tell me more about the MatterControl software?

Matterhackers Matter about Matter

Dave Gaylord: “MatterControl software is free open source software that organizes and manages your 3D prints. It’s designed to help you get the most out of your 3D printer and its available for all operating systems including MatterControl Touch which is an Android-powered touchscreen controller that turns your 3D printer into an independent internet-connected device. Matter Control ships with many 3D printers as the original slicing software including SeeMeCNC and Robo3D. The slicing engine is continually being updated by our in-house software engineers. How can you beat free software that is easy to use?”

3D Printr Magazine: What’s your dream 3D printable material?

Dave Gaylord: “The material chemists in the 3D printing space have been very busy. New 3D printer materials are constantly being developed. We find the problem with many materials is that they are cost prohibitive for our market. PETG checks off a lot of the boxes on my checklist, particularly ease of use, strength, and durability. PETG is used to make water bottles, food packaging, and countless other plastic items. It combines the durability of ABS plastic with ease of use of PLA. Anything that PETG lacks as a 3D printable material, nylon fills the gap. It’s our primary material at MatterHackers.

“Nylon filament is incredibly strong, durable, and versatile. It warps a little if you don’t handle it properly and it is perceived to be a hard material to print but if you know how to handle it — it is an amazing tool. It is flexible when printed thin with very nice inter-layer adhesion. It’s low friction coefficient and high melting temperature makes nylon an excellent choice for 3D printing gears. Printing nylon requires temperatures higher than 240 degrees C. Most 3D printers come standard with hot ends made of PEEK and PTFE which begin to breakdown above 240 C, burn and emit noxious fumes. Make sure you check with your 3D printer manufacturer or email us your 3D printer information if you are unsure if you can print nylon safely.

“Most 3D printers can be upgraded with metal hot ends to print nylon safely and successfully. Nylon is also hydroscopic which means that it can absorb 10% of its weight in 24 hours so it is best if the Nylon material is dried in an oven at a temperature of 160-180 F for 6-8 hours. Store nylon in an airtight container.

“You can prevent the Nylon from warping by printing on a glass bed. We suggest a bed heated to 75 C with a thin layer of glue. To sum up, nylon is a great material that some people perceive to be difficult to print but if you use the tips I just mentioned or look at the information on the MatterHackers website you will enjoy the superior material characteristics of nylon. So I guess my dream material is either nylon or PETG.”

3D Printr Magazine: What’s MatterHackers bestselling material?

Dave Gaylord: “Our Pro series materials are our best sellers. The Pro Series filaments are engineered to highlight the strength of each type of material. Made to the highest tolerances in the USA. The PRO series includes PLA, ABS, PETG, nylon and Flex. MatterHackers stick behind the Pro series material like all the rest of the products we sell but you can use the pro materials with full confidence that you are getting the finest 3D printer material.”

3D Printr Magazine: Does MatterHackers sell material to print metal?

Dave Gaylord: “We sell thermoplastics filament infused with metal powders. The finish looks like bronze or stainless steel when you sand and polish it. They are not as strong as a fully dense metal part but it doesn’t require a $100,000 printer and a Hazmat suit.”

3D Printr Magazine: How have the 3D printer manufacturers improved their printers?

Dave Gaylord: “3D printer manufacturers have really dialed in user experience to the point that you can be 3D printing five minutes after the box is opened. Matter Controls is focusing on improving the user experience by creating presets to get the user printing quickly and having those settings match the different materials.”

3D Printr Magazine: How can you sell 70 printers? Does that confusion people?

Dave Gaylord: “It’s awesome! We have great conversations with our customers. We ask about their expectations and what their needs are. We ask questions such as, ‘Do you need a large build volume?’ ‘Are you focused on print speed?’ ‘Do you care about the visual aspect of what the printed part looks like?’ ‘How many printers do you want — one or a fleet?’ We can really dial in the needs of the customer because we have so many options, and each printer we sell is extensively tested by our team. We know the printers intimately and we can make strong recommendations based on our personal experiences.

“Having a great experience with a 3D printer really comes down to making sure that you — as the 3D printer user — understand what you need and what you can expect from the printer you buy. This is where MatterHackers excels. We regularly send out informative emails. Each printer we sell excels in different areas so it is important to make sure the customer gets all the information about the printers or the materials. People trust us because we aren’t a printer manufacturer. We have a broader vision of the whole 3D printing landscape.”

Fred Kaplan is a 3D-printing material specialist, who has worked with SLA, SLS, FDM, ColorJet, ADAM, DLP, LOM, FFF, MultiJet, Polyjet, and SDL 3D printers. Specializing in matching the best technology to a particular 3D printing application, he has also worked with many brands of 3D scanners and many CAD packages.

Prior to his work in additive manufacturing, Fred received a Los Angeles area Emmy and other awards for documentary filmmaking.

ANSYS SpaceClaim 2016 3D Direct Modeling Software

Posted by Editor On April - 22 - 2016

SpaceClaim’s intuitive interface, speed, and interoperability are all benefits 3D modelers will want to review

ANSYS SpaceClaim brings 3D solid modeling to the desktops of engineers and analysts who work in 3D, with a simplicity and low TCO (Total Cost of Ownership) never seen before in CAD.

With the new Shrinkwrap Tool, you can instantly clean up models for 3D printing by creating a watertight, regular faceting around selected bodies. Now you can prepare extremely noisy scanned data or poor quality CAD files for printing in seconds, not hours or days.

SpaceClaim STL Prep for 3D Printing Module

Speed & Ease-of-Use of SpaceClaim Engineer now available for Editing STL

SpaceClaim provides a solution to prepare models for 3D printing efficiently and easily by offering one tool to not only repair models for printing but also modify STL and CAD files. The STL Prep for 3D Printing module also extends SpaceClaim’s intuitive interface, speed, and interoperability into the 3D printing world.

For more, see:

Easy to Begin Designing Online and Free

Posted by Editor On April - 19 - 2016

V-cloud rendering by is a great beginner tool to start writing your own STL files. Sign up at


Posted by Editor On April - 18 - 2016

TinkerCAD logo

Tinkercad is a simple, online 3D design and 3D printing app for everyone.

Tinkercad is used by designers, hobbyists, teachers, and kids, to make toys, prototypes, home decor, Minecraft models, jewelry – the list is truly endless!