Combining Metamaterial Design with Multimaterials

As we reported on July 28, metamaterial design provides innovative solutions of functional movement to otherwise solid constructs in 3D printing.

According to a recent study published in MIT News, researchers investigating the properties of multimaterial 3D prints have been able to determine specific property capacities available within tiny cube structures utilizing materials combined by the printing process.

Thanks to MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), which is supported in part by the U.S. Defense Advanced Research Projects Agency’s (DARPA) SIMPLEX program, researchers have been able to use algorithmic calculations to determine design schematics involving the properties of the materials used and their likely result in terms of flexibility and endurance.

The algorithmic-generated designs are gauged for stress tolerances using Young’s Modulus and Poisson’s Ratio for uniaxial tension. The diagram below displays a variety of structural designs and the results of their tests.

Combining Metamaterial Cesign with Multimaterials

Examples of multimaterial patterns possible through optomization. Image via Zhu, Skouras, Chen & Matusik

CSAIL’s Bo Zhu, the primary author of the study, commented in the article, “Conventionally, people design 3-D prints manually. But when you want to have some higher-level goal — for example, you want to design a chair with maximum stiffness or design some functional soft [robotic] gripper — then intuition or experience is maybe not enough. Topology optimization, which is the focus of our paper, incorporates the physics and simulation in the design loop. The problem for current topology optimization is that there is a gap between the hardware capabilities and the software. Our algorithm fills that gap.”

For more information on the study, see this article at

Leave a Reply